A U.S. BWR utility contracted with Structural Integrity (SI) to review their current reinspection guidance documents relative to those contained in the BWRVIP inspection guidelines, the purpose of which was two-fold:
Are current reinspection guidelines compliant with industry requirements?
Are there components where reinspection intervals could possibly be extended?
for Bottom Tubesheet Filter/Demineralizers Initial Installation and Performance at Browns Ferry Nuclear StatioThe Browns Ferry Nuclear Station (BFNS) intends to implement an extended power uprate (EPU) at all three units beginning in 2018 for Unit 3 and Unit 1, and in 2019 for Unit 2. EPU implementation will increase the total thermal power of each unit by 494 MWth resulting in a total uprate of 20% from the originally licensed thermal power of 3293 MWth.
Each BFNS unit is currently designed with ten bottom tubesheet condensate filter/demineralizers (CF/Ds) in the condensate treatment system that require an application of a powdered resin precoat to perform the function of demineralization. The precoat material is applied as an overlay on top of vertical filter septa. The filter septa have an inner pleated area, and with a precoat overlay, perform the function of demineralization as well as particulate iron removal. In the absence of circulating water leakage into the condenser, the primary function of the CF/Ds is to remove particulate iron that collects in the condenser hotwell. The iron source is from the corrosion of carbon steel piping and components in contact with main steam and heater drain systems.
Nuclear plant workers accrue most of their radiation exposure during refueling outages, when many plant systems are opened for corrective and preventive maintenance. The total refueling outage radiation exposure can be 100-200 person-Rem at a typical Boiling Water Reactor (BWR), and 30-100 person-Rem at a typical Pressurized Water Reactor (PWR). Accrued refueling outage radiation exposure values can be significantly greater than these values depending upon radiation fields, outage work scope, and emergent work. Outage radiation exposure is one metric used by a plant to determine outage success and by industry regulators in assessing the overall performance of a plant. Plants with high personnel radiation exposure tend to be those plants with more equipment problems and more unscheduled shutdowns; consequently, they may be subjected to increased regulatory oversight.
Radiation source term assessments are performed to understand the causes of high collective radiation exposure and to help plants evaluate their strategies for source term reduction. This involves understanding how a plant’s material choices and chemistry and operational history influence the radiation fields that develop in the plant systems. Consequently, a source term evaluation is very plant-specific, but can help a plant identify which strategies may be most effective for their specific situation.
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
Google Analytics Cookies
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
Other external services
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
Other cookies
The following cookies are also needed - You can choose if you want to allow them:
Privacy Policy
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.