Tag Archive for: ASME Section III

Reactor Vessel Integrity - Fracture Toughness Criteria

News & Views, Volume 50 | Reactor Vessel Integrity

FRACTURE TOUGHNESS CRITERIA

By:  Tim Griesbach and Dan Denis

Reactor Vessel Integrity - Fracture Toughness CriteriaThe integrity of the nuclear reactor pressure vessel is critical to plant safety.  A failure of the vessel is beyond the design basis.  Therefore, the design requirements for vessels have significant margins to prevent brittle or ductile failure under all anticipated operating conditions.  The early vessels in the U.S. were designed to meet Section VIII of the ASME Boiler and Pressure Vessel Code and later Section III.  ASME Section III included requirements for more detailed design stress analyses also included a fracture mechanics approach to establish operating pressure-temperature heatup and cooldown curves and to assure adequate margins of safety against brittle or ductile failure incorporating the nil-ductility reference temperature index, RTNDT. This index is correlated to the material reference fracture toughness, KIC or KIa. 

Radiation embrittlement is a known degradation mechanism in ferritic steels, and the beltline region of reactor pressure vessels is particularly susceptible to irradiation damage.  To predict the level of embrittlement in a reactor pressure vessel, trend curve prediction methods are used for projecting the shift in RTNDT as a function of material chemistry and fluence at the vessel wall.  Revision 2 of this Regulatory Guide is being used by all plants for predicting RTNDT shift in determining heatup and cooldown limits and hydrostatic test limits.

READ MORE

News & View, Volume 44 | Planned and Emergent Outage Support Structural Integrity is on Your Team

News & Views, Volume 44 | Planned and Emergent Outage Support – Structural Integrity is on Your Team

By:  Terry Herrmann

News & View, Volume 44 | Planned and Emergent Outage Support Structural Integrity is on Your TeamWhile the 2018 Spring outage season is mostly behind us, we all know a key element in being able to provide safe, reliable, clean and economic power to energy consumers is how successfully plant outages are accomplished.   I know from personal experience how good planning, including contingency planning, has significantly reduced outage durations (see Figure 1).  I worked my first outage in 1981.  It ran 110 days and was punctuated by rework, surprise discoveries and last-minute procurement of materials and services.  By the late 1990s the industry had established outage milestones for design changes, significantly improved the level of detail in schedules, performed more work with the plant on line and implemented focused outage control organizations.  Except for major activities like condenser retubing, power uprates and emergent issues that impact the scheduled critical path, outage durations today are almost exclusively associated with refueling activities.

READ MORE