Tag Archive for: ASME Code UT Examinations

News & View, Volume 44 | A First-of-a-Kind NDE Innovation from SI The first PDI qualified manually-encoded DM Weld Procedure

News & Views, Volume 44 | A First-of-a-Kind NDE Innovation from SI – The first PDI qualified manually-encoded DM weld procedure

By:  Jason Van Velsor, Joe Agnew, and Owen Malinowski

News & View, Volume 44 | A First-of-a-Kind NDE Innovation from SI The first PDI qualified manually-encoded DM Weld ProcedureDetermining a course of action once in-service damage is discovered often requires applying a multi-disciplinary approach that utilizes Nondestructive Examination (NDE), analytical techniques such as stress analysis, and metallurgical lab examination.  Such was the case recently for a combined cycle plant where indications were found through NDE on the inlet sides of two identical main steam stop/control valves but were not seen on the outlet side.  In this case, Structural Integrity (SI) did not perform the field NDE but was requested to perform analytical and metallurgical assessments of the welds.  The welds in question joined the 1Cr-1Mo-1/2V (SA-356 Grade 9) main stop/control valve body castings to Grade 91 piping, so the welds represent a ferritic-to-ferritic dissimilar metal weld (DMW).  See the Dissimilar Metal Welds in Grade 91 Steel, (page 15) for further information. The welds were made using a 1Cr-1/2Mo (AWS type B2) filler metal, which matches the chromium content of the valve body, but is significantly undermatching in strength to both the valve body material and the Grade 91 piping. 

The course of action taken was to perform local stress analysis and remaining life estimates for the downstream (outlet) connections of the valves to assess likelihood of future damage and establish an appropriate re-inspection interval.  Detailed metallurgical analysis was also performed on a ring (entire circumference) section removed from one of the upstream welds (which exhibited both surface and volumetric indications in the weld metal) in order to provide insight into the damage mechanism and inform the stress analysis and remaining life estimates.

READ MORE