News & Views, Volume 48 | Environmentally-Assisted Fatigue Screening and Managing EAF Effects in Class 1 Reactor Coolant Components

News & Views, Volume 48 | Environmentally-Assisted Fatigue – Screening and Managing EAF Effects in Class 1 Reactor Coolant Components

By: Dave Gerber and Terry HerrmannNews & Views, Volume 48 | Environmentally-Assisted Fatigue Screening and Managing EAF Effects in Class 1 Reactor Coolant Components

Environmentally-Assisted Fatigue (EAF) screening is used to systematically identify limiting locations for managing EAF effects on Class 1 reactor coolant pressure boundary components wetted by primary coolant.  This article provides an overview of the methods developed and used by Structural Integrity (SI) for Class 1 components having explicit fatigue analyses performed using ANSI/ASME B31.7(1) and ASME Section III(2).  A future article will discuss how this is performed for Class 1 piping designed and analyzed to ASME/ANSI B31.1(3).

READ MORE

News & View, Volume 44 | Planned and Emergent Outage Support Structural Integrity is on Your Team

News & Views, Volume 44 | Planned and Emergent Outage Support – Structural Integrity is on Your Team

By:  Terry Herrmann

News & View, Volume 44 | Planned and Emergent Outage Support Structural Integrity is on Your TeamWhile the 2018 Spring outage season is mostly behind us, we all know a key element in being able to provide safe, reliable, clean and economic power to energy consumers is how successfully plant outages are accomplished.   I know from personal experience how good planning, including contingency planning, has significantly reduced outage durations (see Figure 1).  I worked my first outage in 1981.  It ran 110 days and was punctuated by rework, surprise discoveries and last-minute procurement of materials and services.  By the late 1990s the industry had established outage milestones for design changes, significantly improved the level of detail in schedules, performed more work with the plant on line and implemented focused outage control organizations.  Except for major activities like condenser retubing, power uprates and emergent issues that impact the scheduled critical path, outage durations today are almost exclusively associated with refueling activities.

READ MORE

News & View, Volume 43 | Delivering the Nuclear Promise- 10 CFR 50.69 Alternative Treatments for Low Safety-Significant Components

News & Views, Volume 43 | Delivering the Nuclear Promise: 10 CFR 50.69 Alternative Treatments for Low Safety-Significant Components

By:  Terry Herrmann

News & View, Volume 43 | Delivering the Nuclear Promise- 10 CFR 50.69 Alternative Treatments for Low Safety-Significant ComponentsAs all of us who work with nuclear energy know the US nuclear industry is engaged in a multi-year effort to generate power more efficiently, economically and safely. A key goal includes a significant reduction in operating expenses. This initiative is termed “Delivering the Nuclear Promise” (DNP) and is supported by nuclear utilities, vendors such as Structural Integrity, the Nuclear Energy Institute (NEI), Institute of Nuclear Power Operations (INPO), and the Electric Power Research Institute (EPRI).

10CFR50.69’ Risk Informed Engineering Programs (RIEP) is a regulation that enhances safety and provides the potential for large cost savings. This regulation allows plant owners to place systems, structures and components (SSCs) into one of the four risk-informed safety class (RISC) categories as indicated in the graphic to the right.

Industry experience to date suggests that 75 percent of safety-related SSCs can be categorized as RISC-3, low safety-significant (LSS), based on low risk. This is important because (a) it provides a focus on safety significance and (b) RISC-3 SSCs are exempted from “special treatment” requirements imposed by 10CFR50 Appendix B and other regulatory requirements (shown in the boxes at the bottom of page).

READ MORE