News & Views, Volume 52 | Heat Exchanger Tube Sheet Reliability Analysis

By:  Kannan Subramanian, PhD, PE, FASME & Dan Parker, PE

BACKGROUND

The hot section of a waste heat boiler, also known as the hot spent boiler, is an essential component in the regeneration of spent sulfuric acid in chemical plants that process sulfur. Due to the ever-increasing demand for sulfuric acid and other sulfur compounds, this is critical equipment as its operation results in sold-out production. As a result, these boilers need maximum uptime between scheduled maintenance outages; any unscheduled shutdowns to repair and/ or replace tubes and tube sheets directly translate into lost revenues for the plant. This article addresses the reliability issues of one such boiler located in a Louisiana chemical plant. 

GOAL: Predict the minimum number of tubes to plug, minimize downtime and allow regular operation until the next planned maintenance.  

Figure 1. Hot Spent Boiler (shaded in red) in a waste heat recovery unit Flue Gas Tube Boiler.

Figure 2. Tube-to-tube sheet joint failures and tube sheet leak

The boiler being assessed was part of an arrangement (Figure 1), with two fire tube boilers in parallel with a common external steam drum. In the case of the single boiler assessed by SI, the tubes were experiencing periodic tube leaks as the boiler was approaching the end of service life where tube failure frequency increases. As typical, there may be a single tube leak or several in the same proximity (Figure 2). Some proactive plugging has been applied based on historical performance (Figure 3(a)). In SI’s experience, tubes adjacent to a plugged tube may fail a short time after the plug is installed as there is an undefined temperature/stress interaction. In addition to tube leaks, general corrosion and tube sheet thinning can be a consequence of tube leaks (Figure 2(c). Excessive tube sheet thinning is not uncommon due to the formation of sulfuric acid that exacerbates the corrosion issue. With these consequences in mind, it is critical that the proper number of tubes be plugged to stop the costly cascade of failures. 

To bring the boiler back to service, in early January of 2022, the leaking tubes and a few other tubes around the leaking tubes were plugged. In addition, to repair the leaking location in the tube sheet knuckle region, welding followed by post-weld heat treatment was performed (Figure 3(b)). Within a few weeks after this repair, additional tube leaks were discovered and required plugging. Such frequent leaks and repairs result in production loss and unplanned expenses. To minimize those, SI was contracted to develop an engineering basis for tube plugging, which would be proactive for equipment reliability, but not produce over-plugging that affects the boiler heat duty. To achieve this, the engineering assessment should involve an advanced analytical study to understand the following:

  • Tube leaks
  • Effect of repair, PWHT, and additional plugging on adjacent unplugged tubes
  • Effect of tube sheet metal loss on the integrity of the tube sheet

This article covers both the historic details of the failures and subsequent repairs and provides a comparison of the failures documented on-site with the analytical results determined from the approach implemented by SI. 

Figure 3. Hot Spent Boiler Plugging and Repair Welding

METHODOLOGY & CRITERIA

The overall approach adopted by SI: 

  • Develop finite element (FE) model to study design deficiencies, if any, using elastic analyses. That is, perform an elastic finite element analysis (FEA).
  • Develop a criterion to study the tube-to-tube sheet integrity.
  • Using the same FE model, perform elastic-plastic analyses to determine the effect of repair and PWHT. 
    • This is to determine if any additional tubes should be plugged to reduce any adverse effects.
    • This is a sequentially coupled thermal-stress analysis.
  • Calculate the minimum required thickness for the various sections of the waste heat boiler.
Table 1. Criteria Used in the Analyses

Table 1. Criteria Used in the Analyses

Table 1 illustrates the criteria considered for the work described herein. Several stress magnitudes were considered, such as the tube material allowable stress, tube-to-tube sheet joint allowable stress, and the ratcheting limit. Typically, when elastic analyses are performed, ratcheting limits are helpful. However, this work did not utilize the ratcheting limit. The tube-to-tube sheet joint allowable stress and load are calculated using Section VIII, Div. 1, Nonmandatory Appendix A. The allowable stress and load are compared against the equivalent stresses and tube axial loads, respectively, from the FEA to determine the mechanical integrity of the tube-to-tube sheet location. However, since there exists a parallel damage mechanism (general corrosion), the yield strength of the tube is set as a limit to add conservatism.

Figure 4. Hot Spent Boiler as Modeled in FEA

 

ANALYSES & RESULTS

Since the methodology requires the use of advanced analytical methods, an FEA model (Figure 4) was built and analyzed using the commercial FEA software package – Abaqus. The model included sufficient lengths of gas inlet and outlet sections, the tube support location at the mid-section of the mud drum, the refractory, and the brackets that connect the hot section with the boiler drum. Since the nozzles are far from the area of interest, they are not included in the model. Appropriate element types were utilized for this work. One notable feature is the use of beam elements for the tubes (Figure 5). Since the model includes hundreds of tubes, incorporating a solid tube and heat exchanger model adds both geometric and numerical complexity. The use of beam elements simplifies the model while significantly minimizing the numerical convergence issues when compared with the full solid models. 

Figure 5. Hot Spent Boiler Tubes Inside the FEA Model

All the analyses performed are thermo-mechanical analyses, wherein a heat transfer/thermal analysis is performed first, and the temperature profile from the thermal analysis is imposed along with respective mechanical loads in the subsequent stress/mechanical analysis. Initially, elastic models were used to assess the design adequacy of the subject boiler and to determine the bounding operating conditions for further analyses involving the repair process. For the analyses involving the weld repair and the post weld heat treatment (PWHT) followed by operating conditions, the sequence of steps is critical. SI discussed the methodology with the client when developing the accurate sequence to be included in the FEA. As stated earlier, to capture the effect of residual stresses (after welding and PWHT processes) on the corroded tube sheet section at the bottom where the leak was discovered, an elastic-plastic FEA is essential. Temperature results from the welding process step are shown in Figure 6. After welding and PWHT, the process conditions were applied to the model along with the number of plugged tubes at the time. Figure 7 illustrates the temperature distribution in the tube sheet, boiler drum, and tubes. Since the plugged tubes do not transport flue gas, the temperature of those tubes is the same as the water temperature around those tubes inside the drum.

Since the number of tubes is significant, post-processing of results is a challenge. SI developed a procedure to overlay the von Mises equivalent stress results on a spreadsheet layout that resembles the actual tube layout in the tube sheet. It is further simplified for better visualization in this article, as shown in Figures 8 through 10. Figure 10 (a) shows a historical perspective of the tube plugging over time. In the first set of analyses that SI performed, only the locations shown with greyish blue color (tubes plugged before Jan. 2022) were considered as plugged. The thermal analysis results for this case are shown in Figure 7. After performing the mechanical/stress analysis, it was observed that the unplugged tube locations shown in Figure 8 (a) with orange and red dots are of concern. The orange dot locations indicate the locations with stresses greater than the tube yield strength. The red dot locations indicate that the stresses exceeded the allowable stress. Since the criteria are set at joint location stresses exceeding the tube allowable stresses, both orange and red dot locations require tube plugging. Figure 8 (b) shows the locations where further tube leaks were discovered within weeks of the weld repair and plugging. The tube leak locations are identified with yellow marks. This gives the confidence that such analytical methods, when appropriately applied, can predict the locations of future failures.

Figure 6. Repair Welding Simulation – Heat Transfer Analysis

Figure 7. Post Repair and Plugging Process Conditions – Heat Transfer Analysis

After the discovery of the new leaks, further plugging was undertaken. These locations are identified by light blue dots in Figure 10 (a). SI incorporated these changes in the analyses and determined that the locations shown in red and orange dots in Figure 8 (a) are still a concern, as shown in Figure 9 (a). This was later confirmed by further tube leaks (see Figure 9 (b)) found after 6 weeks of the previous plugging was completed. This further assured the value of performing such an engineering-based approach rather than a traditional grand-fathering approach which would use plugging methods adapted for similar units based on historical information. It should be noted that SI was engaged in this study at the period between weld repair and second set of plugging as shown in Figure 8. However, all the results were made available just prior to the third leak shown in Figure 9 (b). At this time, the Client utilized the results from the FEA and decided to add additional tube plugging as shown in Figure 10. SI performed analyses with the final set of plugging, and the results indicated that other tube locations around the plugged tube locations are not of concern (see Figure 10 (b)).

Figure 8. Post Repair and Plugging Process Conditions Criteria Check and Field Observation

Figure 9. Additional Plugging and Field Observation after that Plugging

The last set of analyses were performed in mid-March of 2022, and after 6 months, the boiler did not experience any further leaks. While the engineering approach predicted the issues, it is cautioned that any engineering analysis can only simulate the known degraded material thickness and properties in the analysis and not the corrosion degradation mechanism itself. The rate of deterioration and the interaction of various damage mechanisms should be monitored by the operator.

Figure 10. Tube plugging to-date and tube-to-tube sheet joint stress state

CONCLUSIONS

  • The original, as-installed condition did not show significant issues. It is believed that other damage mechanisms caused the initial failures leading to the plugging of tubes around the periphery of the tube sheet.
  • The study captured the recent joint issues, specifically the failure after the plugging and repair weld performed in early January 2022. 
  • Thinner regions are more prone to further failure. The minimum required thickness using the same criteria is established for the tube sheet.
  • The analysis was successful in predicting the minimum number of tubes to plug.
  • Plugging the correct number of tubes stopped the typical tube failure cascade.
  • The applied results were directly proven. Once the results were fully implemented, the waste heat boiler had no unplanned shutdowns. The analysis met its goal and provided a major business impact.
  • Analysts need sufficient information to minimize assumptions and make a robust model.
  • Clear understanding of API 579, ASME Section VIII Div. 1, ASME Section I, and FEA is necessary to develop robust, realistic, and relevant engineering solutions.

Get News & Views, Volume 52

Structural Integrity Associates | News and Views, Volume 51 | Deaerator Tank Failure Effective Assessment Technique

News & Views, Volume 51 | Deaerator Tank Failure

EFFECTIVE ASSESSMENT TECHNIQUES

By:  Matt David, Michael Greveling, Daniels Peters and Erick RitterStructural Integrity Associates | News and Views, Volume 51 | Deaerator Tank Failure Effective Assessment Technique

Recently, Structural Integrity Associates (SI) helped a client with a leaking deaerator tank (DA tank). DA tanks are traditionally used to remove dissolved gasses from liquids. The client’s DA tank in particular is used to remove dissolved oxygen in feedwater for steam-generating boilers; this is done because dissolved oxygen can create a corrosive environment within the boiler as it will attach to the metal components, creating oxides. The DA tank protects the boiler from these corrosive gasses, however, to the DA tank’s detriment, not much protects it from those same gasses. Repairs on DA tanks are common and additionally it is not uncommon for those repairs to continue to experience problems.

The DA tank being investigated for leaking in this investigation had an entire shell segment, various full thickness patch plates, and a head replaced in 2018 due to wall thinning caused by flow-accelerated corrosion (FAC). The current leak was caused by cracking of a girth and longitudinal seam weld in a mismatched repair patch. The failure prompted inspection, stress analysis, and repair consulting by SI. The following reveals the steps taken to repair the failed DA tank.

Initial visual inspection of the leaking DA tank indicated that the problematic repair patch had significant radial mismatch relative to the tank shell to which it was welded and grossly oversized weld layers resulting in high tensile shrinking stresses. The mismatch resulted in significant bending at the weld line and the excessive weaving of the weld layers led to tensile forces acting on the weld imperfections at the toe of the welds. Due to the visual finding, 3D scanning was performed to better understand the magnitude of the mismatch. 

READ MORE

SI FatiguePRO for Hydrogen Fueling Station Assets - Vessel Life Cycle Management

News & Views, Volume 50 | SI FatiguePRO for Hydrogen Fueling Station Assets

VESSEL LIFE CYCLE MANAGEMENT

By:  Erick Ritter and Daniel Peters

SI FatiguePRO for Hydrogen Fueling Station Assets - Vessel Life Cycle ManagementInitial introduction of many of the hydrogen fueling stations to support this rapidly growing demand were installed around 2010. There were many designs of cylinders developed and installed at that time, many with known limitations on the life of the equipment due to the high pressures involved and cyclic fatigue crack growth issues due to hydrogen embrittlement.  The designs were often kept relatively simple to lower their costs often with little or no considerations for in-service inspection or potential end of life considerations.  Others involved innovative designs with reinforcing wrapping to try to enhance the life of the vessels, but by doing so, these designs limited the access to the main cylinder wall for in-service inspection. 

Many of these vessels are now reaching or passing the design life established by ASME.  This is resulting in problems for operators of this equipment as some jurisdictions will not allow the vessels to operate beyond the design life without inspection or re-rating of the vessels to extend the fatigue life.  SI’s FatiguePRO is a commercial software solution which has been addressing this exact concern for over 25 years.

READ MORE

What’s All the Buzz About Hydrogen! News and Views, Volume 50

News and Views, Volume 50 | What’s All the Buzz About Hydrogen!

By:  Daniel Peters (SI) and Thomas Pastor (HSB Global Inspection & Engineering Services)

What’s All the Buzz About Hydrogen! News and Views, Volume 50

A recent news story reported:

  • Hydrogen initiatives are accelerating globally.
  • 200+ large-scale projects have been announced across the value chain, with a total value exceeding $300 billion
  • 30+ countries have national hydrogen strategies in place, and public funding is growing

Anyone who is following climate change issues and the expansion of the use of renewable energy would have seen the subject hydrogen popping up all over the place. Just do a Google search using the following words “hydrogen renewable energy climate change” and dozens of links will be displayed promoting the use of green or renewable hydrogen, made from the electrolysis of water powered by solar or wind, as indispensable in achieving climate neutrality.

READ MORE

News & View, Volume 46 | Multi-discipline Solution for Pressure Vessel Asset Management

News & Views, Volume 46 | Multi-discipline Solution for Pressure Vessel Asset Management

By:  David Segletes and Dan Peters

One of the strengths of the Structural Integrity Associates (SI) team lies in the diversity of the skills and capabilities in the organization. Sure, SI can perform inspection, analysis, design, metallurgy, failure investigations, risk assessments, and project management, but one of the real values of working with SI is when all of those aspects are brought together to solve an issue.

News & View, Volume 46 | Multi-discipline Solution for Pressure Vessel Asset ManagementRecently, a client approached SI after finding a through-wall flaw in an autoclave at the head-to-shell weld as indicated by a visible dye liquid penetrant examination (Figure 1). The autoclave was one of eight similar vessels used for processing the client’s product. Three of the autoclaves are identical in construction to the flawed autoclave and operate with similar process conditions. Remote visual examination by the client indicated that all four autoclaves had similar observations at the inside of the head-to-shell weld, but only one was leaking. The remaining four autoclaves are smaller and are used infrequently. The initial call from the client was for SI to provide emergent support for inspection of the three autoclaves identical to the leaking one to meet production demands. SI responded quickly and examined all four autoclaves using a manual phased array ultra-sonic technique (PAUT) from the exterior of the vessel. The manual PAUT examination provided excellent coverage of the weld region and visualization of the through wall flaw (Figure 2).

READ MORE

News & View, Volume 46 | Hydrogen Fueling Structural Integrity into New Markets

News & Views, Volume 46 | Hydrogen Fueling Structural Integrity into New Markets

By:  Daniel Peters and Myles ParrNews & View, Volume 46 | Hydrogen Fueling Structural Integrity into New Markets

Energy sources that don’t have carbon emissions are rapidly developing in the country and around the world today.  The use of renewable energy sources such as wind, hydro, and solar is becoming increasingly common.  One area that is also changing is in the automotive arena.  The use of alternative fuels in the transportation sector, such as natural gas and hydrogen, has been under development for many years.  Natural gas is quite common today in the public transportation sector in many cities for fueling buses in cities. 

Development of hydrogen fuel cell automobiles increased significantly around the turn of the century and recently has gained increasing popularity.  Many hurdles have been considered and needed to be overcome to make this a practical reality.  Issues such as reliability of components used in cars, risks of fires due to leaks, and sources of hydrogen needed for those cars are just a few of them.

READ MORE