Structural Integrity Associates | News and Views, Volume 51 | Managing Piping Assets Software Automation

News & Views, Volume 51 | Managing Piping Assets

SOFTWARE AUTOMATIONStructural Integrity Associates | News and Views, Volume 51 | Managing Piping Assets Software Automation

By:  Adam Roukema and Mark Jaeger

Driving Forces for Digital Transformations:
Paper Reduction (68%)
Online Training (54%)
Risk Management/Prediction (39%)
Social Media Integration (63%)
IT Automation (50%)

From Tech Pro Research, %’s reflect rate of respondents who believe digital transformation will significantly impact indicated categories

A fundamental tenant of engineering is that where inefficiencies exist, innovation is next.  This is especially true in the ongoing era of digital transformation, as software-based automation eliminates mundane, trivial tasks and enables increased focus on value-add activities.  A recent poll of workers in the tech industry found that 70% of their respective companies have either committed to or are developing a transformation strategy, with varying emphases (see sidebar).  The energy sector is no stranger to these innovations, and while the pace and scope of digital transformation may not appear to match that of driverless cars or moon rockets, its societal impacts are comparably widespread.

Historically, SI has been recognized as a leader in highly technical subject matter areas such as fracture mechanics, material degradation, and nondestructive examination.  In many cases, this expertise is aided by digital or software innovations that enable efficient data handling, novel computer aided visualizations, and dynamic performance of complex calculations.  In this vein, our MAPPro software is designed to aid in management of aging piping assets and has been an integral resource to the nuclear industry since its inception in 2009.

READ MORE

News & View, Volume 48 | Acoustic Resonance

News & Views, Volume 48 | Acoustic Resonance

By: Mark Jaeger and Andrew CromptonNews & View, Volume 48 | Acoustic Resonance

Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies).

in everyday life.  In the most simple at home example, blowing air over the open end of a bottle.  Blow too hard, nothing. Blow too soft, nothing.  When done just right, the bottle produces a sound (audible vibration).  Just like that, you have acoustic resonance.  Every wind instrument in a band uses acoustic cavity resonance to produce music.  Take a piece of flexible hose, spin it in the air until it whistles, again, acoustic resonance.  When an acoustic cavity resonance happens inside piping systems, especially those with high energy flow, those seemingly harmless vibrations we illustrated above can cause serious damage.  This phenomena can occur in nearly any industry, sometimes with benign consequences and other times with catastrophic results.

 

News & View, Volume 48 | Optimizing Cathodic Protection Commitments Aging Management Program (AMP XI.M42)

News & Views, Volume 48 | Optimizing Cathodic Protection Commitments Aging Management Program (AMP XI.M42)

By: Shane McManus and Mark JaegerNews & View, Volume 48 | Optimizing Cathodic Protection Commitments Aging Management Program (AMP XI.M42)

License renewal applications (LRAs) often involve commitments to future actions.  These can be classified into one of three categories: appropriate, overcommitment, and ambiguous implementation.  Appropriate commitments include those actions that are expected by the NRC (such as those explicitly identified in the GALL(1) and GALL-SLR(2)) as well as some less restrictive actions that are technically justified by engineering evaluation.  These commitments can generally be implemented within one operating cycle using existing technology, are cost-effective, and are consistent with the GALL and GALL-SLR.

Overcommitments and those commitments with ambiguous implementations can be avoided and cost-effectiveness optimized by obtaining independent third party reviews (ITPR) of the LRA.

READ MORE

News & View, Volume 44 | Data Driven Solutions for the Most Difficult Problems

News & Views, Volume 44 | Data Driven Solutions for the Most Difficult Problems

By:  Andrew Crompton and Mark Jaeger

News & View, Volume 44 | Data Driven Solutions for the Most Difficult ProblemsIn recent years, SI has observed an increasing trend in the use of specialty instrumentation to solve “impossible” problems or answer “indecipherable” questions.  This shift was particularly apparent within commercial nuclear, where data-driven solutions have long been perceived as challenging due to short outage windows, personnel dose concerns, and a significant paperwork burden, among other factors.  Widespread adoption of instrumentation-based solutions creates new paths to tackling difficult/persistent problems, and shifts the industry focus for critical assets from reactionary to more of a predictive approach.  In 2017, SI assisted numerous clients with deployment of specialty instrumentation in this fashion, comprising two general scenarios: 1) new designs/modifications, and 2) repeat failures.  Each application requires different sensors and varying analytical methods, but the approach used to leverage the resultant data to solve the problem is generically applicable throughout the energy sector.  The text below details important considerations for both scenarios and highlights a successful application of the underlying process for management of thermal fatigue in reactor coolant system branch piping.

READ MORE